A Research on Web Content Extraction and Noise Reduction through Text Density Using Malicious URL Pattern Detection
نویسندگان
چکیده
A Web Page has large amount of information including some additional contents like hyperlinks, header footer, navigational panel; advertisements which may cause the content extraction to be complicated. Page Segmentation is used to detect the noisy content block by detecting malicious URL from Web Pages. Main aim of this research is detecting malicious URL during content extraction by checking different patterns of URL. Performance is analysed based on precision, recall, execution time and noise detected using proposed algorithm.
منابع مشابه
Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملAnalyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملData Extraction using Content-Based Handles
In this paper, we present an approach and a visual tool, called HWrap (Handle Based Wrapper), for creating web wrappers to extract data records from web pages. In our approach, we mainly rely on the visible page content to identify data regions on a web page. In our extraction algorithm, we inspired by the way a human user scans the page content for specific data. In particular, we use text fea...
متن کاملA Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Thousands of organisations store important and confidential information related to them, their customers, and their business partners in databases all across the world. The stored data ranges from less sensitive (e.g. first name, last name, date of birth) to more sensitive data (e.g. password, pin code, and credit card information). Losing data, disclosing confidential information or even chang...
متن کاملEfficient Malicious URL based on Feature Classification
Deceitful and malicious web sites pretense significant danger to desktop security, integrity and privacy. Malicious web pages that use drive-by download attacks or social engineering techniques to install unwanted software on a user‘s computer have become the main opportunity for the proliferation of malicious code. Detection of malicious URL has become difficult because of the phishing campaig...
متن کامل